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Abstract
We review analytical and numerical results for surface-directed spinodal
decomposition (SDSD), namely, the interplay of wetting kinetics and phase
separation in a binary (AB) mixture in contact with a surface S which prefers one
of the components (say,A). Depending on the relative strengths of the A–B, A–S
and B–S interactions, the surface is either partially wetted or completely wetted
by A in equilibrium. We discuss the theoretical framework for modelling SDSD,
and review results obtained from both microscopic and coarse-grained models.
We clarify the differences between diffusion-driven SDSD in solids, and SDSD
in fluids, where velocity fields play an important role. Furthermore, we discuss
the dependence of wetting-layer kinetics on the composition of the mixture.
Some results are also presented for phase separation in a confined geometry,
e.g., thin films. Finally, we discuss the problem of surface-enrichment kinetics,
namely, the kinetics of enrichment of an attracting surface when the bulk mixture
is stable. These nonequilibrium processes have important applications in the
preparation of nanomaterials and multi-layered structures.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Consider a binary (AB) mixture, which is homogeneous at high temperatures. This mixture
becomes thermodynamically unstable if it is quenched below the coexistence curve. The
subsequent evolution of the system is characterized by the emergence and growth of domains
enriched in either component. This far-from-equilibrium phase-separation process is of
great scientific and technological importance, and has attracted much research interest. It
is prototypical of a large class of problems in the broad areas of phase ordering dynamics
or domain growth or coarsening kinetics. The standard tools used to characterize pattern
formation in phase ordering systems are (a) domain growth laws and (b) quantitative measures
of the domain morphology like correlation functions,structure factors, domain-size distribution
functions etc. There now exists a good understanding of domain growth in the bulk, and this
has been reviewed by several authors [1–3].

Real experimental systems are confined in containers or have open surfaces, which often
have a preferential attraction for one of the components of the mixture. This can have a drastic
effect on the kinetics of phase separation, as we will discuss in this review article. In this
context, it is important to clarify the equilibrium properties of an immiscible AB mixture in
contact with a surface S. Let γA, γB and σ denote the surface tensions between AS, BS and AB,
respectively. Without loss of generality, we assume that γA < γB, so that A is preferentially
attracted to the surface. The contact angle between the AB interface and S is determined by
Young’s condition [4]:

σ cos θ = γB − γA. (1)

For γB − γA < σ , both A and B are in contact with the surface, forming a partially wet (PW)
morphology. However, equation (1) has no solution for γB − γA > σ . In this case, the
B-rich phase is expelled from the surface and the component A covers the surface, forming
a completely wet (CW) morphology. The equilibrium transitions between the PW and CW
morphologies have been extensively studied [5–10]. Furthermore, the above discussion is
easily generalized to include the effects of geometry and mixture composition [11].

Let us consider a generalization of the bulk phase separation problem. A homogeneous
mixture is in contact with a surface with a preferential attraction for one of its components
(say, A). The mixture is quenched deep below the coexistence curve, so that it undergoes phase
separation in the bulk, and segregates into A-rich and B-rich domains. Simultaneously, the
surface is wetted by the component A. The interplay of these two kinetic processes (i.e., phase
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separation and wetting) is referred to as surface-directed spinodal decomposition (SDSD) or
surface-directed phase separation, and has important technological applications.

We have a long-standing interest in SDSD, and this article reviews our understanding of
this problem. We will also discuss the experimentally relevant problem of surface-enrichment
kinetics, which refers to accretion of the preferred component from a stable (rather than
unstable) mixture. Earlier reviews of analytical and numerical studies of SDSD are due to
Puri and Frisch [12] and Binder [13]. The present review discusses current developments in
this area in a pedagogical framework. A review of experimental studies of SDSD is due to
Krausch [14]. A more recent review of experiments and technological applications has been
written by Geoghegan and Krausch [15].

This review is organized as follows. In section 2, we provide a brief overview of
experiments in this area. This is intended to motivate the subsequent discussion—a more
detailed discussion of experiments is available in [14, 15]. In section 3, we discuss the
modelling of SDSD at both the microscopic and coarse-grained levels. In section 4, we discuss
analytical and numerical results for SDSD in a semi-infinite geometry. In section 5, we focus
on phase separation in a confined geometry. Finally, in section 6, we turn to the problem of
surface-enrichment kinetics. Section 7 concludes this paper with a summary and discussion.

2. Representative experimental results

2.1. Experiments on polymer mixtures

The first experimental study of SDSD is due to Jones et al [16], who studied the segregation
of mixtures of poly(ethylenepropylene) (PEP) and perdeuterated-PEP (dPEP). These mixtures
had an open surface, which was preferentially wetted by d-PEP. Jones et al observed the
formation of composition waves (or SDSD waves) with wavevectors normal to the surface,
which propagated into the bulk, as shown in figure 1. These experiments did not provide
quantitative results for the time-dependent evolution of the SDSD waves.

Krausch et al [17] improved on these experiments, studying a similar system but with
better techniques. They focused on the time-dependence of the first ‘zero’-crossing of the
SDSD profiles (see figure 1 or 2), namely, the distance from the surface (say, R1(t) where t is
time) where the composition assumes its average value. Their results (see figure 2) showed that
R1(t) obeyed the growth law R1(t) ∼ t1/3, which is analogous to the Lifshitz–Slyozov (LS)
law for diffusion-driven domain growth in the bulk [1]. The surface field was weak in the
experiments of Krausch et al, and the surface was only partially wetted by droplets of the
preferred phase.

A similar study is due to Bruder, Brenn and others [18, 19], who used critical mixtures
of deuterated polystyrene (dPS) and partially brominated polystyrene (PBrx S). They found
that the preferred phase initially formed a plated layer at the surface, suggestive of a CW
morphology. However, the CW morphology was metastable, and only grew out for a while
before decomposing into a PW morphology. The layer thickness again obeyed the LS growth
law, R1(t) ∼ t1/3.

In a related experiment,Krausch et al [20] studied the evolution of an initial state consisting
of a multi-layer of the coexisting phases of a polymer mixture (namely, dPS and PBrxS) in
contact with an unstable bulk. For early and intermediate times, they found that coarsening
near the surface occurred by the dissolution of alternating layers of the initial structure. At
late times, they again found results similar to those in [17–19].

It is of even greater interest to study the opposite limit of a strong surface field, which
gives a CW morphology. In this case, there is rapid formation of a multi-layered structure
at the surface, which consists of alternating layers of the preferred and non-preferred phases.



R104 Topical Review

Figure 1. Evolution of laterally averaged profiles for an unstable polymer mixture (PEP and dPEP)
in contact with an open surface which prefers dPEP [16]. The frames show the depth-dependence
of the average density of dPEP at (a) 19 200 s, (b) 64 440 s and (c) 172 800 s after the quench. The
average composition of the mixture is denoted by a dotted line.

For extended times, the growth of the wetting layer depends on the surface potential. The
experiments of Geoghegan et al [21, 22] are relevant to this limit. These authors studied
SDSD in blends of dPS and poly(α-methylstyrene) (PαMS) for a variety of quench depths.
They observed an LS growth of the wetting layer for deep quenches giving rise to a PW
morphology, and much slower growth for shallow quenches corresponding to a CW surface
morphology.

Recent interest has also focused on SDSD in other contexts. For example, various groups
have studied SDSD on patterned substrates [23–25]. In these experiments, the surfaces are
specially prepared (e.g., in a checkerboard or striped pattern) so that different regions are
preferentially wetted by different components. This provides interesting possibilities for
applications involving the preparation of nanomaterials and layered structures.
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Figure 2. (a) Analogous to figure 1, but from the experiments of Krausch et al [17]. The laterally
averaged profiles are shown for both polymers in the mixture (PEP and dPEP) at 14 400 s after
the quench. To compare these profiles with those in figure 1, the pre-surface region of ∼20 nm
should be discarded. (b) Plot of wetting-layer thickness versus t1/3 for two different quench
temperatures [17]. The dashed lines denote the best linear fits to the experimental data sets.

It is also experimentally relevant to study domain growth in the vicinity of the surface,
and to clarify how it is affected by the growth of the wetting layer. We denote the length scales
parallel and perpendicular to the surface as L‖(t) and L⊥(t) respectively. In the semi-infinite
geometry, we expect L‖, L⊥ → L(t) (the bulk domain size) at large distances from the surface.
Again, we should distinguish between two different physical situations. In the PW case, where
domains of both phases are in contact with the surface, it is reasonable to examine domain
growth at the surface itself. On the other hand, in the CW case, where the surface is covered by
a layer of the preferred phase, we consider domain growth outside the multi-layered structure.
Straub et al [19] found that the lateral size of surface domains formed in the PW case obeys
the LS growth law, L‖(t) ∼ t1/3.

2.2. Experiments on fluid mixtures

Let us next discuss some experiments on SDSD in binary fluid mixtures, where hydrodynamic
velocity fields play an important role. Bulk phase separation is fluids is driven by advective
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transport along domain boundaries, yielding faster growth in the asymptotic regime [26, 27].
An important set of experiments on SDSD in fluids is due to Wiltzius,Cumming and others [28–
31], who observed a fast mode of surface domain growth in polymer and fluid mixtures. These
authors found that the structure factor of the coarsening system exhibited two peaks, rather
than the single peak usually seen in bulk spinodal decomposition. The position of one peak
obeyed the appropriate bulk growth law, i.e., L(t) ∼ t for advective growth [26] or L(t) ∼ t1/3

for diffusive growth. However, the position of the other peak (located at larger length-scales)
exhibited an anomalously fast growth law L(t) ∼ tφ , with φ ∼ 1.1–1.5. These authors
interpreted the fast growth as an early-time coating regime in which a droplet morphology
evolves to one where the surface is completely layered. This interpretation has been supported
by the molecular dynamics (MD) simulations of Ma et al [32, 33].

Guenoun et al [34] also studied the interplay of wetting and phase separation in fluid
mixtures (cyclohexane and methanol) at critical concentrations. The time-regime they studied
corresponds to a situation in which the surface is already coated with a layer of the preferred
phase. They found that the wetting layer grew as R1(t) ∼ tφ , with φ � 0.56. Guenoun et al
also reported that domain growth parallel to the surface was slower than bulk growth, and was
characterized by a growth exponent φ ∼ 0.5–0.7.

Finally, Tanaka [35] has also conducted experiments on segregating polymer mixtures
confined in capillaries with dimensionality d = 1, 2. Most of Tanaka’s experiments were
conducted on mixtures of polyvinylmethylether (PVME) and water, or oligomer mixtures.
His primary focus was the interaction between phase separation and the wetting layer growing
from the surface. In particular, he focused on the asymptotic regime, where hydrodynamic
effects dominate the segregation dynamics. Tanaka found a strong dependence of the evolution
morphology on the composition of the mixture. A recent review by Tanaka [36] summarizes
results from his experiments, and provides useful scaling arguments for growth laws in fluid
mixtures near a surface. We will reproduce some of these arguments in section 4.4.1.

2.3. Experimentally relevant issues

Our survey of representative experimental results provides guidance to the relevant theoretical
questions. It is appropriate to summarize the experimentally relevant issues which must be
clarified by any reasonable theoretical framework for SDSD.

(1) The surface is rapidly enriched in the preferred component, and becomes the origin of
SDSD waves which propagate into the bulk. What is the morphology and time-dependence
of these waves? Does their nature depend on whether the surface exhibits a CW or PW
morphology in equilibrium?

(2) What are the characteristics of domain growth in the vicinity of the wetting layer? For
example, what are the growth laws characterizing segregation in the directions parallel
and perpendicular to the surface?

The subsequent discussion primarily discusses the case where phase separation occurs
via diffusion. At appropriate points, we will highlight the modifications which arise when
hydrodynamic effects are incorporated.

3. Theoretical modelling

3.1. Models for bulk phase separation

3.1.1. Diffusive case. The phase separation of binary (AB) mixtures can be modelled at both
the microscopic and coarse-grained levels. At the microscopic level, a reasonable model is the
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nearest-neighbour Ising Hamiltonian on a discrete lattice:

H = −J
∑
〈i j〉

σiσ j , σi = ±1, (2)

where J is the strength of the exchange coupling. For a site i , σi = +1 denotes an A atom
and σi = −1 denotes a B atom. The subscript 〈i j〉 refers to a sum over nearest-neighbour
pairs. The Ising model has no intrinsic dynamics, so we introduce stochastic kinetics by
placing the system in contact with a heat bath. The ordering of a ferromagnet is modelled by
Glauber spin-flip or nonconserved kinetics, where an arbitrary spin is flipped as σi → −σi .
On the other hand, the appropriate kinetics for the segregation of a binary mixture is Kawasaki
spin-exchange or conserved kinetics, where a randomly chosen spin σi is exchanged with a
neighbour σLi as σi ↔ σLi . The Kawasaki kinetic Ising model can be extended to include
velocity fields, as in lattice-gas automata [37]. An alternative microscopic model for phase
separation in fluids is obtained from MD simulations [38].

Next, let us discuss coarse-grained models of phase separation. For the diffusive case, a
reasonable model is the Cahn–Hilliard–Cook (CHC) equation:

∂

∂ t
ψ(	r , t) = −	∇ · 	J(	r , t)

= 	∇ · [D 	∇µ(	r , t) + 	θ(	r , t)]

= 	∇ ·
[

D 	∇
(
δF
δψ

)
+ 	θ(	r , t)

]
. (3)

Here, ψ(	r , t) is the order parameter at space point 	r and time t . Equation (3) is also referred
to as model B in the critical dynamics literature [39]. Typically,ψ(	r , t) = ρA(	r , t)−ρB(	r , t),
where ρA and ρB denote the local densities of species A and B. In equation (3), the quantities
	J , D andµ denote the current, diffusion coefficient and chemical potential difference between

A and B, respectively. The chemical potential is obtained as a functional derivative of the
Helmholtz free energy, which is often taken to have the ψ4-form:

F[ψ] = H − T S

�
∫

d	r
[
−1

2
kB(Tc − T )ψ2 +

kBT

12
ψ4 +

J

2
( 	∇ψ)2

]
, (4)

where we have identified 〈σi 〉 = ψ(	ri ) in equation (2) and Taylor-expanded various terms.
Here, Tc denotes the critical temperature, and T denotes the temperature. Finally, the Gaussian
white noise term 	θ(	r , t) has zero average and obeys the fluctuation–dissipation relation:

	θ(	r , t) = 0,

θi(	r ′, t ′)θ j( 	r ′′, t ′′) = 2DkBT δi jδ(	r ′ − 	r ′′)δ(t ′ − t ′′),
(5)

where the bar denotes an ensemble average. Using a master-equation approach, the CHC
equation can be motivated from the spin-exchange kinetic Ising model [40].

The diffusive phase separation of binary mixtures obeys the LS growth law, L(t) ∼ t1/3,
which is obtained as follows. The chemical potential on the surface of a domain of size
L is µ ∼ σ/L, where σ is the surface tension. The concentration current is obtained as
D| 	∇µ| ∼ Dσ/L2, where D is the diffusion constant. Therefore, the domain size grows as
dL/dt ∼ Dσ/L2, or L(t) ∼ (Dσ t)1/3.

3.1.2. Incorporation of hydrodynamic effects. We can incorporate hydrodynamic effects
in the CHC equation by including a velocity field [39]. The resultant model for the order
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parameter is

∂

∂ t
ψ(	r , t) = 	∇ ·

[
D 	∇

(
δF
δψ

)
− ψ 	v + 	θ(	r , t)

]
, (6)

where 	v(	r , t) denotes the fluid velocity field which advectively transports the order parameter.
We assume that the fluid is incompressible with constant density ρ. This imposes a constraint
on the velocity field as 	∇ · 	v = 0.

The corresponding equation for the velocity field is the Navier–Stokes equation with an
‘external’ force term:

∂

∂ t
	v(	r , t) = η∇2	v −

[
ψ 	∇

(
δF
δψ

)]
⊥

+ [	ζ (	r , t)]⊥, (7)

where the pressure has been eliminated using the incompressibility condition, and η is the
viscosity. Furthermore, [ 	X(	r)]⊥ denotes the transverse part of the vector 	X(	r). In momentum
space, this is computed as

[ 	X(	k)]⊥ = 	X(	k)− 	k · 	X(	k)
k2

	k. (8)

The Gaussian white noise in equation (6) satisfies the conditions in equation (5). The
corresponding conditions for 	ζ (	r , t) in equation (7) are

	ζ (	r , t) = 0,

ζi (	r ′, t ′)ζ j( 	r ′′, t ′′) = −2ηkBT δi j∇2δ(	r ′ − 	r ′′)δ(t ′ − t ′′).
(9)

Equations (6)–(9) are referred to as model H in the classification scheme of Hohenberg
and Halperin [39]. Let us focus on the deterministic (T = 0) case. The relaxation of the
velocity field is much faster than that of the order-parameter field. Thus, we set ∂ 	v/∂ t = 0 on
the LHS of equation (7). The resultant equation is easily solved in Fourier space for 	v as

vi (	k, t) = −Ti j(	k)X j (	k, t)

= − 1

ηk2

(
δi j − ki k j

k2

)
X j (	k, t),

	X(	k, t) =
∫

d	r ei	k·	rψ 	∇
(
δF
δψ

)
. (10)

In equation (10), repeated indices are summed over and we have introduced the Oseen tensor
Ti j(	k). In d = 3, the real-space Oseen tensor is

Ti j(	r) = 1

8πηr

(
δi j +

rir j

r2

)
. (11)

Replacing the expression for the velocity in the deterministic version of the order-
parameter equation, we obtain a closed evolution equation:

∂

∂ t
ψ(	r , t) = 	∇ ·

[
D 	∇

(
δF
δψ

)
+ ψ

∫
d 	r ′ Ti j(	r − 	r ′)X j (	r ′, t)

]
. (12)

Equation (12) is a good starting point for understanding the domain growth laws which govern
coarsening in binary fluids. At early times, growth is diffusion limited, as in the case of binary
alloys. However, there is a crossover to a hydrodynamic growth regime, where material is
rapidly transported along domain boundaries by advection [26, 27]. The growth laws for
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different regimes are summarized by Bray [1], and we quote the relevant results here:

L(t) ∼




(Dσ t)1/3, L � (Dη)1/2, diffusive regime,
σ t

η
, (Dη)1/2 � L � η2

ρσ
, viscous hydrodynamic regime,(

σ

ρ

)1/3

t2/3,
η2

ρσ
� L, inertial hydrodynamic regime.

(13)

With this background, let us next consider the effect of surfaces on phase separation, both
without and with hydrodynamics.

3.2. Early studies of SDSD

An early study of SDSD is due to Xiong and Gong [41], who considered a semi-infinite system
with a surface at z = 0. The order parameter obeys the CHC equation with the ψ4 free-energy
functional in equation (4):

∂

∂ t
ψ( 	ρ, z, t) = 	∇ · [ 	∇(−ψ + ψ3 − ∇2ψ) + 	θ ], z > 0, (14)

where we have rescaled ψ, 	r , t into dimensionless units. (The nature of this rescaling will be
discussed later.) We have introduced the notation 	r ≡ ( 	ρ, z), with 	ρ and z denoting coordinates
parallel and perpendicular to the surface, respectively. In this study, the surface gives rise to a
delta-function (or short-ranged) potential, which only affects the boundary conditions. Xiong
and Gong supplemented the CHC equation with a boundary condition at z = 0:

∂

∂z
ψ( 	ρ, z, t)

∣∣∣∣
z=0

= cψ( 	ρ, 0, t), (15)

where c measures the strength of the surface potential.
Following Langer et al [42], Xiong and Gong used this model as the basis of an approximate

theory for the time-dependent structure factor in the surface layer. They found that phase
separation in the boundary layer is faster than that in the bulk, but they did not quantify domain
growth near the surface. Unfortunately, the Xiong–Gong study is open to criticism for two
reasons. Firstly, their model is incomplete without a second boundary condition at the surface,
which should be of the no-flux or zero-current type:[

∂

∂z
(−ψ + ψ3 − ∇2ψ) + θz

]
z=0

= 0. (16)

Secondly, the surface free energy used by Xiong and Gong to obtain equation (15) does not
result in a preferential attraction of either of the components to the surface, and is unsuitable
in the context of SDSD.

Jiang and Ebner [43] studied SDSD through Monte Carlo (MC) simulations of a semi-
infinite Ising model with Kawasaki kinetics. They considered cases with both short-ranged
and long-ranged (power-law) surface potentials. They found that the wetting layer thickness
always obeyed the LS growth law, regardless of the potential. However, their results show a
large degree of scatter and it is difficult to ascertain a conclusive growth exponent from their
data.

The next relevant study is due to Ball and Essery [44], who modelled phase separation
near surfaces using equations (14)–(16). As we have remarked earlier, the boundary condition
in equation (15) does not lead to SDSD (for critical quenches) because the corresponding
free energy does not discriminate between the two phases. For off-critical quenches, this
model does exhibit symmetry breaking but in a somewhat artificial manner. Nevertheless,
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the pioneering work of Ball and Essery motivated the initial experiments of Jones et al [16].
Furthermore, their study already recognized the effect of surface morphology on the evolution
dynamics of the ‘wetting’ layer.

3.3. Hamiltonian for binary mixtures with surfaces

A convenient starting point for modelling SDSD is the appropriate kinetic Ising model. This
can be used as the basis for MC simulations. It can also be used to motivate coarse-grained
models of SDSD.

Consider an AB mixture in contact with a planar surface S, located at z = 0. The mixture
consists of NA A atoms and NB B atoms, with N = NA + NB. There are pair-wise interactions
−Eαβ

i j between speciesα andβ at sites i and j . In terms of local concentration variables,nαi = 1
if site i is occupied by an α atom, and nαi = 0 otherwise. The corresponding Hamiltonian is

H = −
N∑

i> j=1

[EAA
i j nA

i nA
j + EBB

i j nB
i nB

j + EAB
i j (n

A
i nB

j + nB
i nA

j )] +
N∑

i=1

[VA(	ri )n
A
i + VB(	ri )n

B
i ],

(17)

where lattice sites only exist in the positive half-space (z � 0). In equation (17), VA(	ri ) and
VB(	ri ) are potentials on A and B atoms at site i due to the hard wall at z = 0. In the case of a free
surface (in contact with vacuum or air) at z = 0, it seems reasonable to set VA(	ri ) = VB(	ri ) = 0.
However, this ignores the roughness of the interface between the mixture and the vapour phase
at z < 0. For solids above their roughening transition temperature TR [45, 46] (and for fluid
mixtures, where the fluid–gas interface is always rough), this assumption is only reasonable
on length scales much larger than the scale of atomic roughness. Furthermore, we expect that
the pair-wise interactions −Eαβ

i j depend not only on the relative distance |	ri − 	r j |, but also on
	ri , 	r j separately. For example, different interactions occur if both sites i, j are in the surface
layer (labelled as iz = 0) [7, 47].

As usual, we only consider the case with nearest-neighbour interactions. Furthermore,
the interactions are taken to be independent of the sites i and j , except when both of
these lie in the surface layer. The potential usually depends only on the distance from the
surface. It is experimentally relevant to consider both short-ranged potentials (V (z) ∼ δ(z) or
V (z) ∼ exp(−z/z0), where z0 is the characteristic decay length) and long-ranged power-law
potentials (V (z) ∼ z−n). We stress that there are significant physical differences between
wetting by short-ranged and long-ranged potentials [10].

We introduce Ising variables through the transformation σi = 2nA
i − 1 = 1 − 2nB

i . The
resultant Ising Hamiltonian is

H = −
∑
〈i j〉

Ji jσiσ j − H
N∑

i=1

σi − H1

∑
iz=0

σi +
∑
iz �=0

V (zi )σi + H0, (18)

where H0 is a constant which only affects the energy scale. The pair-wise exchange interaction
Ji j is

Ji j =




J = EAA + EBB − 2EAB

4
, iz or jz �= 0,

Js = EAA
s + EBB

s − 2EAB
s

4
, iz, jz = 0.

(19)

Here, the subscript s denotes the pair-wise interaction in the surface layer. The bulk ‘magnetic
field’ H is

H = q

4
(EAA − EBB), (20)
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where q is the coordination number of a site. For sites in the surface layer, the magnetic field
(for a cubic lattice) is

H + H1 = q − 2

4
(EAA

s − EBB
s ) +

(
EAA − EBB

4

)
−
[

VA(0)− VB(0)

2

]
. (21)

Finally, the potential is identified as

V (zi ) = VA(zi )− VB(zi )

2
. (22)

The potential contribution at the surface has been absorbed into the definition of H1. For the
case of a delta-function potential, which only acts in the surface layer, the potential term V (zi )

is absent in equation (18).
It is important to note that a non-zero surface field H1 arises even when VA = VB = 0,

and interactions are unchanged at the surface, i.e., EAA
s = EAA and EBB

s = EBB, provided
EAA − EBB �= 0. This is a consequence of the missing neighbours of sites in the surface layer.
This field vanishes if we consider the symmetric case EAA = EBB, but this has little physical
relevance for real binary mixtures. Therefore, a surface field typically appears whenever a
surface is introduced.

The bulk field in equation (18) is irrelevant because we work in a fixed-concentration
ensemble with

∑
i σi = NA − NB. However, the surface field H1 and the potential term remain

as parameters in the problem. These terms are responsible for both surface enrichment and
wetting phenomena in mixtures [7–10]. The generalization of the Hamiltonian in equation (18)
to any other geometry is obvious. For example, in a d = 2 capillary of thickness D, the RHS
of equation (18) contains additional terms arising from the introduction of a surface at z = D.
The framework for characterization of equilibrium critical phenomena for binary mixtures at
surfaces has been discussed earlier by various authors [7–10, 12]. We will not replicate this
discussion here, but rather refer the interested reader to these earlier works.

We conclude this discussion by formulating the coarse-grained free-energy functional
corresponding to the Hamiltonian in equation (18). As usual, we introduce the space-dependent
order parameter 〈σi 〉 = ψ(	ri ), and Taylor-expand around the point 	ri to obtain

F[ψ] �
∫

d	r
[
−1

2
kB(Tc − T )ψ2 +

kBT

12
ψ4 +

J

2
( 	∇ψ)2 + V (z)ψ

]

+
∫

d 	ρ
{
− 1

2 [(q − 2)Js + J − kBT ]ψ( 	ρ, 0)2 − H1ψ( 	ρ, 0)

+
Js

2
[ 	∇‖ψ( 	ρ, 0)]2 − J

2
ψ( 	ρ, 0)

∂ψ

∂z

∣∣∣∣
z=0

}
≡ Fb + Fs. (23)

The term Fb is the bulk free energy in equation (4) supplemented by a surface potential term,
and Fs is the surface contribution. Here, the different value of the exchange interaction in the
surface layer has been explicitly accounted for. The term ∂ψ/∂z|z=0 in Fs appears because
of the missing neighbours for z < 0. The expansion which results in equation (23) is only
justifiable near criticality, where the order-parameter amplitude is small. However, we will
also use this free energy for parameter values far from criticality. The justification for this lies
in the ability of the resultant model to describe experimental phenomenology. The appropriate
minimal model for description of surface critical phenomena has been discussed extensively
in the literature [10].
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3.4. Dynamical models for SDSD

A reasonable microscopic model for SDSD is obtained by associating Kawasaki kinetics
with the Ising Hamiltonian in equation (18). There have been MC studies of such kinetic
Ising models, and we will discuss these shortly. However, the coarse-grained counterpart
of the kinetic Ising model is expected to be more amenable to theoretical analysis. In early
work, Binder and Frisch [48] used the master equation for the kinetic Ising model to obtain a
phenomenologicalmodel for SDSD with a delta-function surface potential. The Binder–Frisch
model consisted of the Cahn–Hilliard (CH) equation (i.e., deterministic version of the CHC
equation) in the bulk supplemented by two boundary conditions representing the surface. One
of these was modified by Puri and Binder [49], who explicitly incorporated a no-flux boundary
condition into the model. The Puri–Binder model was the first successful coarse-grained model
for SDSD. Let us derive it directly from the free-energy functional in equation (23), as was
done for the CHC equation (3).

The bulk order-parameter equation is obtained from equation (3) with F[ψ] from
equation (23). The resultant CHC equation is then

∂

∂ t
ψ(	r , t) = 	∇ ·

{
D 	∇

[
−kB(Tc − T )ψ +

kBT

3
ψ3 − J∇2ψ + V (z)

]
+ 	θ
}
. (24)

Now, the order parameter rapidly relaxes to its equilibrium value at the surface, and is not
a conserved quantity. Therefore, we assume a relaxational (model A [39]) kinetics for the
order parameter at the surface. This yields (ignoring thermal fluctuations) the first boundary
condition:

λ−1 ∂

∂ t
ψ( 	ρ, 0, t) = − δF

δψ( 	ρ, 0, t)

= [(q − 2)Js + J − kBT ]ψ + H1 +
J

2

∂ψ

∂z

∣∣∣∣
z=0
, (25)

where λ−1 sets the timescale. The lateral-diffusion term has been neglected in the second
expression of equation (25) because the order parameter rapidly saturates to its equilibrium
value at the surface. The second boundary condition is the no-flux condition at z = 0:

0 =
{

D
∂

∂z

[
−kB(Tc − T )ψ +

kBT

3
ψ3 − J∇2ψ + V (z)

]
+ θz

}
z=0

. (26)

It is convenient to rescale this model into dimensionless units. As we are interested in
unstable mixtures, we consider the case with T < Tc and introduce the following rescaled
quantities:

ψ ′ = ψ

ψ0
, ψ0 =

√
3

(
Tc

T
− 1

)
,

	r ′ = 	r
ξb
, ξb =

[
q

2

(
1 − T

Tc

)]−1/2

,

t ′ = t

t0
, t0 = ξ2

b

DkB(Tc − T )
,

	θ ′ = t0
ξbψ0

	θ,

V ′(z ′) = 1

ψ0kB(Tc − T )
V (ξbz′).

(27)
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Here, ξb is the bulk correlation length. This yields the dimensionless CHC equation (dropping
the primes):

∂

∂ t
ψ(	r , t) = 	∇ ·

{
	∇
[
−ψ + ψ3 − 1

2
∇2ψ + V (z)

]
+ 	θ
}
, z > 0, (28)

where

	θ(	r , t) = 0,

θi(	r ′, t ′)θ j( 	r ′′, t ′′) = 2εδi jδ(	r ′ − 	r ′′)δ(t ′ − t ′′),
(29)

with the noise amplitude

ε = 1

3

(
Tc

T
− 1

)−2

ξ−d
b . (30)

The corresponding dimensionless boundary conditions are as follows:

τ0
∂

∂ t
ψ( 	ρ, 0, t) = h1 + gψ + γ

∂ψ

∂z

∣∣∣∣
z=0
, (31)

0 =
{
∂

∂z

[
−ψ + ψ3 − 1

2
∇2ψ + V (z)

]
+ θz

}
z=0

, (32)

where τ0 = λ−1 D/ξ2
b . The other parameters in the boundary conditions are as follows:

h1 = H1

ψ0kB(Tc − T )
, (33)

g = (q − 2)Js + J − kBT

kB(Tc − T )
, (34)

γ = J

2ξbkB(Tc − T )
. (35)

Equation (31) rapidly relaxes the surface value of the order parameter to its equilibrium value,
and will be replaced by its static version (τ0 = 0) subsequently. The surface potential and the
parameters ε, h1, g, γ determine the equilibrium phase diagram of the surface [12, 50, 51].

In this context, let us study the static solutions of the T = 0 version of equations (28),
(31) and (32). These are obtained by setting ∂ψ/∂ t = 0. Ignoring lateral fluctuations, the
z-dependent static solution ψs(z) is obtained as the solution of

ψs − ψs
3 +

1

2

d2ψs

dz2
− V (z) = 0, (36)

with the boundary condition

h1

γ
+

g

γ
ψs(0) +

dψs

dz

∣∣∣∣
z=0

= 0. (37)

Puri and Binder [51] have obtained solutions of equations (36) and (37) for the case of a
short-ranged surface potential. The corresponding phase diagram in the (g/γ, h1/γ )-plane is
shown in figure 3. As expected, it is symmetric under h1 → −h1. The phase diagram exhibits
lines of both first-order and second-order transitions, meeting in a tricritical point. Note that
ξb → ∞ and ψ0 → 0 as T → T −

c . In this limit, h1/γ ∼ ξ2
b → ∞ for h1 > 0. Furthermore,

g/γ ∼ ξb → ∞ for g > 0, and −∞ for g < 0. Thus, as the system approaches the critical
point, it is deep in the wetting region of the phase diagram [5]. In a typical experiment, one is
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Figure 3. Phase diagram in the (g/γ, h1/γ )-plane for the case of a delta-function surface potential.
The states are labelled as W (wet) or dry (D), and PW (partially wet) or PD (partially dry). The
metastable states, if any, are specified in brackets. The dashed lines denote lines of second-order
transitions, and have equations h1/γ = ∓g/γ, g/γ < −2 in the upper and lower half-planes.
The dot–dashed lines denote lines of first-order transitions and are obtained from a graphical
construction. The second-order and first-order lines meet at tricritical points. The dotted lines
are the spinodals associated with the first-order phase transitions. In the upper half-plane, their
equations are h1/γ = −g/γ, g/γ > −2 (lower spinodal) and h1/γ = 1 + g2/(4γ 2), g/γ > −2
(upper spinodal). Analogous equations determine the spinodals in the lower half-plane.

interested in spinodal decomposition and wetting far from the bulk critical point. Therefore,
we shall use the present model for parameter choices of h1/γ, g/γ ∼ O(1) as well.

The dynamical model described above is appropriate for a semi-infinite geometry. The
extension to a thin-film (or any other) geometry is straightforward—the boundary conditions
in equations (25) and (26) have to be implemented on all surfaces with appropriate parameters.
There are novel effects in phase separation in confined geometries due to the interaction of
SDSD waves arising from different boundaries [11, 52–54].

The modelling described above has been in the context of diffusive dynamics. However,
many of the experiments on SDSD involve fluid mixtures (see section 2.2), where
hydrodynamic effects play an important role. Again, one could consider microscopic models,
e.g., MD simulations of mixtures near surfaces. There have been a number of such studies
(which are discussed later), and they provide valuable information about the ongoing kinetic
processes. Alternatively, one can study coarse-grained models like model H at a surface.
The boundary conditions on the order-parameter field are similar to those described earlier.
However, these must now be supplemented with boundary conditions on the velocity field,
e.g., the velocity vanishes at the surface. There have been a few studies of model H at surfaces,
and these will also be discussed shortly.

Finally, we mention the work of Diehl and Janssen [55], who have studied the critical
dynamics (rather than far-from-equilibrium dynamics) of model B at a surface. These authors
have used symmetry considerations to classify possible boundary conditions. Diehl and
Janssen have also examined the physical implications of different boundary conditions for
critical dynamics at a surface.
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3.5. Characterization of SDSD

As stated earlier, the characterization of SDSD involves understanding (1) the growth kinetics
and morphology of the wetting layer, and (2) domain growth in the vicinity of the wetting
layer. We already have a good understanding of bulk phase-separation kinetics, and this will
serve as a useful reference point.

The morphology of the wetting layer is quantified via laterally averaged order-parameter
profiles as in figures 1 and 2. Recall that the SDSD profiles decay to the homogeneous value
of the order parameter in the bulk. The wetting-layer kinetics is characterized by the growth
laws governing the zero-crossings of the laterally averaged profiles.

In the bulk, domain growth is characterized by equal-time correlation functions and
structure factors. These are time dependent since one focuses on far-from-equilibrium systems.
For domain growth near surfaces, it is appropriate to define layer-wise correlation functions,
which depend on the distance from the surface. The relevant quantities are as follows:

(a) the z-dependent correlation function,

C‖( 	ρ1 − 	ρ2, z, t) = 〈ψ( 	ρ1, z, t)ψ( 	ρ2, z, t)〉 − 〈ψ( 	ρ1, z, t)〉〈ψ( 	ρ2, z, t)〉, (38)

and
(b) its Fourier transform, the z-dependent structure factor:

S‖(	k‖, z, t) =
∫

d 	ρ exp(i	k‖ · 	ρ)C‖( 	ρ, z, t). (39)

The angular brackets in equation (38) denote an average over independent realizations of the
evolution. In equation (39), 	k‖ denotes the wavevector component which is parallel to the
surface.

We can also consider the more general correlation function:

C( 	ρ1 − 	ρ2, z1, z2, t) = 〈ψ( 	ρ1, z1, t)ψ( 	ρ2, z2, t)〉 − 〈ψ( 	ρ1, z1, t)〉〈ψ( 	ρ2, z2, t)〉. (40)

Notice that there is no translational invariance in the z-direction because of the surface located
at z = 0. We can identify C‖( 	ρ1 − 	ρ2, z, t) = C( 	ρ1 − 	ρ2, z, z, t). The counterpart of this
generalized correlation function in Fourier space is defined as follows:

S(	k, z, t) =
∫

d 	ρ
∫ ∞

0
dz′ exp[i	k‖ · 	ρ + ik⊥(z ′ − z)]C( 	ρ, z′, z, t), (41)

where k⊥ denotes the wavevector component which is perpendicular to the surface. The surface
excess of the scattering intensity of the system is then

Ss(	k, t) =
∫ ∞

0
dz [S(	k, z, t) − Sb(	k, t)], (42)

where Sb(	k, t) is the bulk structure factor.
In studies of bulk phase separation, length scales are defined from the decay of the

correlation function or as inverse moments of the structure factor [56]. Here, one considers
the characteristic length L‖(z, t), describing the growth of correlations parallel to the surface
at a distance z from the surface. This is defined as the distance over which the appropriate
correlation function decays to (say) half its maximum value, i.e.,

C‖(L‖, z, t) = C‖(0, z, t)

2
. (43)

A perpendicular length scale L⊥(z, t) can be defined similarly. In the semi-infinite geometry,

L‖(z, t), L⊥(z, t) → L(t), as z → ∞, (44)

where L(t) is the bulk length scale.
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4. Results for surface-directed spinodal decomposition

4.1. Early-time behaviour

The nonlinear model in equations (28)–(32) is not analytically tractable. However, the growth
of fluctuations in the early-time regime can be understood by solving a linearized version of
this model. This is obtained by setting ψ = ψ0 +ψ ′, where ψ0 is the average order parameter
of the system andψ ′ denotes small fluctuations aroundψ0. The linear model inψ ′ is as follows
(dropping the primes):

∂

∂ t
ψ(	r , t) = 	∇ ·

{
	∇
[
(3ψ2

0 − 1)ψ − 1

2
∇2ψ + V (z)

]
+ 	θ
}
, z > 0, (45)

with the boundary conditions

0 =
(

h1

γ
+

g

γ
ψ0

)
+

g

γ
ψ +

∂ψ

∂z

∣∣∣∣
z=0

, (46)

0 =
{
∂

∂z

[
(3ψ2

0 − 1)ψ − 1

2
∇2ψ + V (z)

]
+ θz

}
z=0

, (47)

where we have set τ0 = 0. The solution of the bulk linearized model with V (z) = 0 is
straightforward. However, in the present case, one has to account for the surface potential and
two boundary conditions at the surface.

Binder and Frisch [48] solved the linear problem for a delta-function surface potential,
and a stable bulk with T > Tc. They studied the equilibration of a homogeneous initial
condition, and showed that the resultant surface-enrichment profile has a minimum whose
distance from the wall grows as t1/2. Two remarks are in order here. Firstly, the kinetics of
surface enrichment for a stable mixture is also an experimentally relevant problem [57, 58],
and will be discussed in section 6. Secondly, the solution of the linear problem is similar for
both surface enrichment and SDSD, though the physics is quite different. The solution of the
surface-enrichment problem is reasonable for all times. On the other hand, the solution of the
linear SDSD problem is only valid for early times. At later times, the growing fluctuations must
be saturated by nonlinearities in the dynamical equations. Nevertheless, an early-time theory
of SDSD is useful to predict the selected wavelengths of surface-directed profiles. Frisch et al
[59] studied the linear regime of SDSD, and found that the initial evolution replicated the
damped concentration profiles seen in figure 1.

In this context, another interesting study is due to Fischer et al [60]. Recall that the
boundary condition in equation (31) ignored surface diffusion, because the field homogenizes
the order parameter at the surface. Fischer et al undertook an analysis of linear SDSD in the
absence of a surface field but with surface diffusion, and found that novel instabilities arise for
certain parameter ranges.

4.2. Dynamics of wetting and phase separation

4.2.1. Wetting for critical mixtures (ψ0 = 0). Next, let us discuss the kinetics of wetting-
layer growth, and phase separation adjacent to the wetting layer. The discussion follows that
of Puri and Binder [61] and Puri et al [62], who have studied SDSD using the model in
equations (28)–(32) for a wide range of mixture compositions and power-law potentials:

V (z) =



−V0, z � 1,

− V0

zn
, z > 1.

(48)
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ψ
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Figure 4. Evolution of an unstable AB mixture from a homogeneous initial condition with a critical
composition (ψ0 = 0). The snapshots in the upper frames are obtained from an Euler-discretized
version of equations (28)–(32) on a d = 2 square lattice of size Lx × Lz (with Lx = 400 and
Lz = 300). The mesh sizes in space and time are �x = 1 and �t = 0.03. The surface is
located at z = 0 and attracts A (with ψ > 0, marked in black) through the power-law potential
in equation (48) with n = 4 and V0 = h1 = 0.8. The other parameter values are g = −0.4 and
γ = 0.4, corresponding to complete wetting in equilibrium. The noise amplitude is ε = 0.041,
which corresponds to a deep quench with T � 0.22Tc from equation (30). The lower frame shows
laterally averaged profiles for the evolution at dimensionless times t = 60, 240, 2400 and 2400.
The solid line is drawn at ψav = ψ0, and denotes the average order parameter. Notice the two-step
wetting profile at the surface.

Here, the lower cut-off is chosen to avoid the power-law singularity at z = 0. Power-law
potentials are common in the context of surface–molecule interactions, e.g., n = κ − d , with
κ = 6 and 7 corresponding to cases with non-retarded and retarded van der Waals’ interactions,
respectively [63, 64]. The short-ranged case is recovered in the limit n → ∞. For simplicity,
we will consider the case with EAA = EBB and EAA

s = EBB
s in equation (21). In that case,

the dimensionless surface field is h1 = −V (0) = V0.
In figure 4, we show the evolution of a critical binary mixture (i.e., average order parameter

ψ0 = 0) from a homogeneous initial condition. The simulation details and parameter values are
provided in the figure caption. The surface (at z = 0) is completely wetted by the component
A (marked in black), and shows a multi-layered morphology, i.e., wetting layer followed by
depletion layer, etc. This morphology is time-dependent and propagates into the bulk, as
seen from the laterally averaged profiles shown in the lower frame. These are obtained by
averaging ψ(x, z, t) along the x-direction for a typical evolution, and further averaging over
200 independent runs. This procedure is the numerical counterpart of the lateral averaging
which yielded the density–depth profiles in figures 1 and 2. The averaging procedure gives
ψav(z, t) � ψ0 = 0 in the bulk, where the segregation profiles are randomly oriented. However,
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Figure 5. Analogous to figure 4, but for the case where the minority component wets the surface,
with ψ0 = −0.4.

a systematic behaviour is seen at the surface. The wetting profiles are characterized by the zero-
crossings ofψav(z, t)−ψ0, and R1(t) and R2(t) denote the first and second zeros, respectively.
A phenomenological theory for these quantities will be formulated shortly.

Puri et al [49, 62] have studied domain growth adjacent to the wetting layer for a critical
quench and a variety of surface potentials. They characterize domain growth using z-dependent
correlation functions and structure factors, as defined in section 3.5. Their studies suggest the
following picture. Domains near the wetting layer are characterized by two length scales
L‖(z, t), L⊥(z, t) ∼ t1/3, with L‖ > L⊥ (see figure 4). The length scale parallel to the surface
is larger because of the orientational effect of the multi-layered morphology at the surface.
However, the enhancement is only in the prefactor of the growth law. These length scales cross
over to diffusive growth [L‖(z, t) ∼ t1/2] as the domains are absorbed into the wetting layer
which propagates into the bulk. In this review, we will primarily focus on the evolution of
the SDSD profiles. For detailed results on anisotropic domain growth adjacent to the wetting
layer, we refer the interested reader to the papers of Puri et al [49, 62].

4.2.2. Wetting by the minority component (ψ0 < 0). Next, consider the effect of asymmetric
composition on the growth kinetics of the wetting layer. First, we consider the case where the
wetting component is the minority component in the mixture.

Figure 5 shows the evolution from a homogeneous initial condition with ψ0 = −0.4,
corresponding to a mixture with 30% A (the preferred component) and 70% B. In the snapshots
shown in the top frames, the bulk (large z) is characterized by a droplet morphology, which
is usual for off-critical phase separation [56, 65]. As in figure 4, there is a wetting layer of
the preferred component at the surface, which is followed by a depletion layer. The surface
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Figure 6. Analogous to figure 4, but for ψ0 = −0.8.

morphology is clarified by the laterally averaged profiles shown in the bottom frame. At
comparable times, the thickness of the wetting and depletion layers is larger than in figure 4.

Next, consider the evolution of an extremely off-critical case (ψ0 = −0.8 or 10% A and
90% B) in figure 6. In this case, the thermal fluctuations are not sufficient to nucleate an A-rich
droplet on the timescale of the simulation. Thus, there is no bulk phase separation, but there
is a rapid growth of the wetting layer at the surface. The behaviour is qualitatively different
from that for ψ0 = 0.0,−0.4, due to the absence of bulk phase separation. The lower frame
of figure 6 shows that the A-rich wetting layer is followed by a layer which is moderately
depleted in A, and extends deep into the bulk.

Let us first understand the time-dependence of the wetting profiles seen in figures 4 and 5,
where the bulk undergoes phase separation. We denote the thickness of the depletion layer
as h(t) = R2(t) − R1(t). Consider the typical snapshots in figures 4 and 5. There are two
contributions to the current which drives the growth of the wetting layer.

(1) The surface-potential gradient drives A to the wetting layer with a current −dV/dz|z=R1 .
(2) The intrinsic chemical potential due to local curvature is higher on the curved surface of

bulk A-rich domains (of length scale L) than on the flat wetting layer (of length scale
∞). This difference is estimated as σ/L, and the corresponding current contribution at
the wetting layer is −σ/(Lh).

Thus the A-current in the z-direction is obtained by adding these two contributions as
follows:

Jz � −dV (z)

dz

∣∣∣∣
z=R1

− σ

Lh
. (49)
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Figure 7. Plot of R2/R1 versus t for ψ0 = 0.0,−0.2,−0.4,−0.6. We define R1(t) as the first
z-value at which ψav(z, t) crosses ψ0, and R2(t) as the second z-value at which ψav(z, t) crosses
ψ0. The horizontal lines are drawn at R2/R1 = 2/(1 + ψ0).

To estimate h(t), assume that the wetting and depletion layers have an overall composition of
ψ0. This yields the relations

R2(t) � 2

1 + ψ0
R1(t), h(t) � 1 − ψ0

1 + ψ0
R1(t). (50)

The validity of the scaling assumption in equation (50) is demonstrated in figure 7, where we
plot R2/R1 versus t for ψ0 = 0,−0.2,−0.4 and −0.6.

Using the power-law form of the potential from equation (48), and h(t) from
equations (50), equation (49) yields [61]

dR1

dt
= −Jz � nh1

R1
n+1 +

σ

L R1

(
1 + ψ0

1 − ψ0

)
. (51)

The bulk length scale obeys the LS growth law L(t)= f (ψ0)(σ t)1/3, where the function f (ψ0)

is known analytically for |ψ0| → 1 [1], but only numerically for other values of ψ0 [56]. The
first term on the RHS of equation (51) is dominant at early times (for n > 1) and the second
term is dominant at late times. This yields the growth regimes as

R1(t) ∼



(h1t)1/(n+2), t � tc,√

(1 + ψ0)

f (ψ0)(1 − ψ0)
(σ t)1/3, t � tc.

(52)

The crossover time tc is obtained by equating the early-time and late-time length scales as (for
n > 1)

tc ∼ h3/(n−1)
1 σ−(n+2)/(n−1)

[
f (ψ0)(1 − ψ0)

(1 + ψ0)

]3(n+2)/[2(n−1)]

. (53)

Clearly, the crossover between the potential-dependent regime and the universal regime
(R1 ∼ t1/3) can be extremely delayed, depending on the various system parameters and
mixture composition. This clarifies the reason for the diverse growth exponents reported by
various experiments and numerical simulations. Figure 8(a) plots ln[R1(t)] versus ln t for
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Figure 8. (a) Time-dependence of the wetting-layer thickness, ln R1 versus ln t , for mixtures with
different composition: ψ0 = 0.0,−0.2,−0.4,−0.6. The straight lines have slopes 1/6 and 1/3,
respectively. The exponent φ = 1/6 corresponds to potential-dependent growth for the case of
nonretarded van der Waals’ interactions with n = 4 in d = 2. (b) Plot of ln R1 versus ln t for an
extremely off-critical composition with ψ0 = −0.8. The straight line has a slope of 1/2.

ψ0 = 0.0,−0.2,−0.4,−0.6 and illustrates this crossover behaviour. Figure 8(b) shows the
corresponding data for ψ0 = −0.8, which will be discussed shortly.

Before proceeding, let us make some comments regarding the case of a critical quench
with ψ0 = 0. As both components are present in equal proportions, the bulk is bicontinuous
and has surfaces with both positive and negative curvatures. This suggests that the second term
on the RHS of equation (51) should be replaced by its average value, which changes sign asψ0

goes through zero. This would result in a divergence of the crossover time in equation (53) as
ψ0 → 0. However, figure 8(a) does not show this because the ψ0 = 0 evolution morphology
is also characterized by A-rich droplets in the region subsequent to the depletion layer (see the
snapshot at t = 240 in figure 4). These droplets arise because of the flow of A to the wetting
layer through the depletion layer.

Let us briefly comment on the cases of the power-law potential with n = 1, and the
short-ranged potential V (z) = −V0 exp(−z/z0). For V (z) ∼ −z−1, both terms on the RHS
of equation (51) are comparable for all times and the resultant growth law is the LS law,
R1(t) ∼ t1/3. On the other hand, the short-ranged potential yields a logarithmic early-time
growth, R1(t) ∼ z0 ln(h1t/z2

0), which rapidly crosses over to the universal LS growth law.
However, thermal fluctuations may interfere with the observation of the logarithmic growth
regime [66].
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Finally, consider the case of highly off-critical quenches (ψ0 � 0), where there is no bulk
phase separation as in figure 6. Here, there are no droplets in the bulk to feed the wetting layer.
Thus, the bulk chemical potential is the uniform value µ0 = ψ0

3 − ψ0. The corresponding
current to the wetting layer is −µ0/h, where h(t) is now the scale on which the order parameter
exponentially saturates to its bulk value (see the lower frame of figure 6). We neglect lateral
fluctuations and assume a simple form for ψ(z, t) as follows:

ψ(z, t) �
{

1, z < R1(t),
ψ0 − B0e−(z−R1)/h, z > R1(t),

(54)

where B0 is a parameter. This form will be justified when we discuss the kinetics of surface
enrichment in section 6. The composition constraint then yields

h(t) � (1 − ψ0)

B0
R1(t). (55)

Thus, equation (51) is modified as

dR1

dt
� nh1

R1
n+1 +

µ0 B0

1 − ψ0

1

R1

= nh1

R1
n+1 +

|ψ0|(1 + ψ0)B0

R1
. (56)

The corresponding growth regimes in this case are (for any value of n)

R1(t) ∼
{
(h1t)1/(n+2), t � tc,
[|ψ0|(1 + ψ0)B0]1/2t1/2, t � tc.

(57)

The crossover from potential-dependent growth to a universal diffusive growth law occurs at
the crossover time

tc ∼ h2/n
1 [|ψ0|(1 + ψ0)B0]−(n+2)/n. (58)

Figure 8(b) plots ln[R1(t)] versus ln t for ψ0 = −0.8, illustrating the asymptotically diffusive
growth of the wetting layer. For a short-ranged surface potential, the initial growth regime is
logarithmic, as before.

4.2.3. Wetting by the majority component (ψ0 > 0). Finally, we focus on off-critical
compositions with ψ0 > 0, so that the majority component wets the surface. Figure 9 shows
the evolution of a homogeneous initial condition with ψ0 = 0.4. Now, the droplets are of the
non-wetting component. A thin wetting layer is formed and grows very slowly, as seen in the
lower frame of figure 9. The depletion layer that forms adjacent to the wetting layer is hardly
apparent in this case.

At first, it seems counter-intuitive that the wetting layer grows so slowly when the majority
component wets the surface. Essentially, the bulk droplets now compete with (rather than feed)
the wetting layer for the preferred component A, as the intrinsic chemical potential for A is lower
on the surface of the drops. Thus, only the first term on the RHS of equation (51) is operational,
and wetting-layer growth is driven only by the surface potential with R1(t) ∼ t1/(n+2). As a
matter of fact, the wetting-layer growth is even slower because the intrinsic chemical-potential
gradient actually drives A into the bulk [61]. Similar considerations apply for other values of
ψ0 > 0, when the bulk undergoes phase separation.

The extremely off-critical case (with ψ0 � 0) is analogous to enrichment kinetics seen
for T > Tc, if there is no nucleation of droplets over extended timescales. If droplets are
nucleated, the scenario described for ψ0 = 0.4 is applicable again. In section 6, we will
discuss surface enrichment at length.
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Figure 9. Analogous to figure 4, but for the case where the majority component wets the surface,
with ψ0 = 0.4.

4.3. Other relevant studies of SDSD

The discussion so far has followed the work of Puri et al [61, 62]. Now, we discuss other
important studies of this problem. In early work, Brown and Chakrabarti [67] undertook a
Langevin simulation of SDSD in d = 2 with both short-ranged and long-ranged surface fields.
Their model was similar to that described in section 3.4, but the parameter values gave rise
to a PW surface morphology. Brown and Chakrabarti found that the surface layer thickness
obeyed the LS growth law, R1(t) ∼ t1/3. They also showed that length scales perpendicular
and parallel to the surface were consistent with the LS growth law, but L‖ > L⊥. This is
in conformity with the results described in section 4.2. Brown et al [68] also reported an
interesting study of surface-induced nucleation, where they considered a metastable mixture
in contact with a surface. The flow of the preferred component to the surface facilitated the
nucleation of droplets adjacent to the wetting layer. This corresponds to the case discussed
in section 4.2.3, with ψ0 > 1/

√
3, the mean-field spinodal. Brown et al found that the

wetting-layer thickness showed very slow growth, as explained in section 4.2.3.
Brown and Chakrabarti also studied SDSD in block copolymer melts in both semi-infinite

and film geometries [69]. Following Oono and Shiwa [70], they modelled block copolymers
by the ψ4 free-energy functional in conjunction with a long-ranged interaction term. For
bulk phase separation, it is known that coarsening block copolymers freeze into a meso-
structure, whose length scale depends inversely on the strength of the long-ranged interaction
potential [70, 71]. Analogous effects occur for SDSD in block copolymers, and some of these
are discussed by Brown and Chakrabarti [69].

A comprehensive cell dynamical system (CDS) [56] study of SDSD in d = 2, 3 was
reported by Marko [72],who investigated cases with both short-ranged and long-ranged surface
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potentials. Marko carefully studied domain growth morphologies and the laterally averaged
profiles in both PW and CW cases. For the PW morphology, he found results consistent with
those of Brown and Chakrabarti [67] for the growth of wetting layers. On the other hand, in
the CW case, he found a drastic slowing down of wetting layer growth. This is consistent with
the potential-dependent growth regime discussed in section 4.2.2.

There have also been studies of microscopic models for SDSD. For example, Sagui et al
[73] reported a d = 3 MC study of the spin-exchange Ising model with a short-ranged surface
field. They studied situations with both zero and non-zero surface fields. Recall that phase
separation can occur in the surface layer, even if the bulk is stable, by an appropriate choice of
interactions. For the case of a stable bulk and unstable surface, Sagui et al found that lateral
growth in the surface layer was consistent with the Lifshitz–Allen–Cahn (LAC) growth law
which characterizes nonconserved dynamics, namely, L‖(t) ∼ t1/2. For the case where both
the bulk and surface are unstable, Sagui et al found that the growth exponent in the surface
layer ranged from φ = 1/2 → 1/3, depending on the quench depth. The lower exponents
correspond to deeper quenches.

Finally, there have also been Langevin simulations of SDSD on patterned substrates by
Karim et al [23], in conjunction with their experiments on polymer blends. These Langevin
studies suggested ways of controlling the phase-separation morphology near the surface. Lee
et al [74] have also adapted the models described in section 3.4 to study the effect of immobile
obstacles with non-rectangular shapes (e.g., spheres or cylinders) on spinodal decomposition.

4.4. Role of hydrodynamic effects

Next, let us consider the role of hydrodynamic effects in SDSD. At the outset, we stress that
domain connectivity is crucial in enabling advective transport of the order parameter. For
off-critical fluid mixtures with isolated droplets of the minority component, SDSD is driven
by diffusive transport as described above. For near-critical fluid mixtures, we expect novel
features due to the presence of hydrodynamic effects.

4.4.1. Arguments for growth exponents. In section 3.1.2, we saw that bulk binary fluids
coarsen faster than binary solids, due to advective transport of the order parameter by the
velocity field. This results in the growth law L(t) ∼ (σ/η)t in the viscous hydrodynamic
regime, where σ is the surface tension and η is the fluid viscosity (see equation (13)).

Here, we derive the growth exponents characterizing SDSD in binary fluids. In many
experiments on SDSD, the surface is initially coated by the preferred component, regardless
of whether the equilibrium morphology is PW or CW. The dynamics of coating has been
discussed by Tanaka [35, 36]. The bulk tubes are in contact with the surface, and the pressure
gradient between the bulk and surface results in a flux ∼(σ/η)L2, where L is the tube size.
Under strong wetting conditions, this flux results in the lateral spreading of a layer droplet of
size Ls(t), whose growth (in d = 3) is then determined by dL2

s/dt ∼ (σ/η)L2. Using the
Siggia growth law, L(t) ∼ (σ/η)t , one obtains the surface growth law Ls(t) ∼ (σ/η)3/2t3/2,
which is consistent with the experimental observations of a fast mode by Wiltzius, Cumming
and others [28, 29]. The above arguments also yield the crossover time to complete coating as
tc ∼ η/σ .

Next, we consider the dynamics of wetting layer growth. If one neglects the early potential-
dependent regime, we can describe the growth as follows. The wetting layer grows due to
the flux of material from the tube into the surface layer. For the hydrodynamic problem, this
yields S(dR1/dt) ∼ (σ/η)L2 × (S/L2), where S is the surface area and S/L2 is the number
of tubes. Thus, R1(t) ∼ (σ/η)t for the wetting-layer dynamics also. However, this result is
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at variance with the experiments of Guenoun et al [34], who observed much slower growth of
the wetting layer. This discrepancy could be due to transient growth laws dependent upon the
surface potential, as discussed in section 4.2.

4.4.2. Numerical studies. An early numerical study of SDSD in fluid mixtures is due to
Ma et al [32, 33], who performed MD simulations of binary (AB) fluids confined in a thin
film. They considered two different cases: (a) both A and B are equally repulsed by the walls,
and (b) one of the walls has a preferential attraction for A. In the first case, Ma et al studied
density-correlation functions in the parallel direction,and found that these exhibited reasonable
dynamical scaling, except when the capillary was too thin, i.e., comparable to the molecular
diameter. The associated length scale was L‖ ∼ tφ with φ � 0.54, which they claimed to be
consistent with the experiments of Guenoun et al [34]. However, the two physical situations are
considerably different so a comparison is inappropriate. A more credible explanation is that the
MD simulation in (a) is analogous to phase separation in d = 2 fluids, which is characterized
by the exponent φ = 2/3 [38]. The second case of Ma et al is relevant to the SDSD problem.
In this case, they observe a fast mode in the surface layer, but with an exponential rather than
power-law growth.

Another early MD study is due to Zhang and Chakrabarti [75], who considered a fluid
mixture confined in a d = 1 capillary. These authors focused on equilibrium rather than
dynamical issues, and studied the conditions under which capsule/tube (or CW) and plug
(or PW) morphologies are obtained for the phase-separated mixture in the capillary. These
morphologies are discussed in detail in section 5.2.

As stated earlier, a reasonable coarse-grained model for SDSD in a binary fluid is model H,
supplemented with appropriate boundary conditions. Chen and Chakrabarti [76] have studied
SDSD (in d = 2) by numerically solving model H in a semi-infinite geometry. They consider
a surface with a long-ranged potential and impose no-slip conditions on the velocity field at the
surface. Their primary result is that the wetting-layer growth crosses over from R1(t) ∼ t1/3

(characteristic of diffusive growth in d > 1) to R1(t) ∼ t2/3 (characteristic of hydrodynamic
growth in d = 2 [38]). This crossover occurs because domains of the preferred component
drain rapidly into the surface layer.

Another study of model H (in d = 3) in a semi-infinite geometry is due to Tanaka and
Araki [77, 36]. They find that the wetting-layer thickness initially grows as R1(t) ∼ t1/3, and
then crosses over to the hydrodynamic regime with R1(t) ∼ t . Tanaka and Araki also find
that the oscillatory profile of SDSD waves is destroyed more rapidly in the hydrodynamic case
than in the diffusive case. These authors also studied growth laws in the layers parallel to the
surface. In the vicinity of the surface, they found a faster growth than L‖ ∼ t , the usual bulk
law. However, they could not associate an unambiguous exponent with this faster growth.
Furthermore, the time-regime of this ‘fast mode’ is considerably later than the formation of the
CW layer. This suggests that the fast growth observed by Tanaka and Araki may be associated
with the anisotropic growth (L‖ > L⊥) of domains due to orientational effects of the wetting
layer, rather than the fast mode of [28–31]. As discussed earlier, this fast mode is associated
with the coating dynamics which results in the formation of a wetting layer.

A recent MD study by Toxvaerd [78] investigated a critical AB mixture phase-separating in
a thin film. The particles interact with each other and the walls via Lennard-Jones potentials.
Toxvaerd focused on the morphologies which arise for different wall-types, e.g., one wall
attracts A whereas the other wall attracts B; both walls attract A and B equally, etc. In all
cases, he finds that the system evolves into a layered morphology, with the layer being parallel
to the surface walls. These ‘layered states’ are metastable configurations which evolve slowly
due to the low dimensionality of the system.
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In recent work, Bastea et al [79] used meso-scale models to study SDSD in d = 3
fluids. These models are at an intermediate level between the microscopic and coarse-grained
models discussed so far, and were first introduced by Bastea and Lebowitz [80] to study bulk
domain growth. They consist of coupled Vlasov–Boltzmann equations for a mixture (AB) of
hard spheres with equal diameters and a long-range repulsion between the two components.
This mesoscopic representation has the advantage that the relevant conservation laws are
automatically satisfied, and it also provides a rigorous route to a macroscopic description. At
the computational level, the method introduced in [80], i.e., coupling of the direct simulation
Monte Carlo algorithm for close-range collisions [81] and the grid-weighting method for the
long-range repulsions [82], permits the study of much bigger systems than those used in MD
simulations.

In the corresponding study of SDSD [79], one of the components of the binary mixture
(say, A) interacts with the surface (located at z = 0) through the power-law potential V (z)
in equation (48) with n = 3. Recall that this corresponds to the case of nonretarded van der
Waals’ interactions in d = 3. The wall is diffusive [83], i.e., particles hitting the wall are
absorbed and re-emitted isotropically with a velocity drawn from a Maxwellian distribution
with the surface temperature Ts. The simulations were done on critical mixtures at T = 0.6Tc,
Ts = T , where Tc is the bulk mean-field critical temperature of the system. The parameter
varied was the strength of the surface–particle interaction, V0.

The simulations of Bastea et al clarified the wetting-layer kinetics in both the PW and
CW cases. In figure 10, we show evolution pictures and laterally averaged profiles for the PW
case. In figure 11, we show the corresponding results for the CW case. Bastea et al found that
the wetting-layer growth was consistent with the Siggia law (R1(t) ∼ t) in the PW case, but
substantially slower (consistent with the LS law for diffusive growth, R1(t) ∼ t1/3) in the CW
case.

Finally, Kuksenok et al [84, 85] have used lattice-Boltzmann and CDS models to study
AB fluids flowing on a patterned substrate. In their simulations, the substrate is decorated with
a chequerboard pattern, with different patches preferring A or B. Kuksenok et al studied the
interplay between phase separation and the competing drive for alignment with the surface
pattern.

5. Phase separation in a confined geometry

So far, we have primarily described modelling and results for phase separation in semi-infinite
systems. As stated earlier, the modelling of phase separation in confined geometries is a
straightforward generalization. Thus, for a thin film of thickness D, we impose the boundary
conditions in equations (25) and (26) at z = D with an appropriate surface potential [52].

There exists a good understanding of the equilibrium properties of confined
mixtures [11, 86–90]. In general, the equilibrium morphologies depend on the confinement
geometry and surface potentials. A detailed discussion of the possible morphologies for a
symmetric thin film is presented in section 5.2. The dynamical evolution of confined mixtures
is much more complex due to the interaction of SDSD waves originating from different surfaces.
However, there have been relatively few investigations of these problems. Let us discuss two
recent works on SDSD in confined systems.

5.1. SDSD in cylindrical samples of steel mixtures

In section 2, we had reviewed representative experimental results for SDSD in polymers
and fluids. Recently, Aichmayer et al [91] have reported the first experimental observation
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t = 60

t = 180

Figure 10. SDSD in an unstable binary fluid with critical composition [79]. The snapshots in the
upper frames were obtained from simulations of meso-scale models based on the coupled Vlasov–
Boltzmann equations for a mixture of hard spheres. The surface (located on the right) is partially
wetted by the preferred component, which is marked in black. The lower frame shows laterally
averaged profiles for the evolution at times t = 50, 100, 200 and 275 (from left to right).

of SDSD in solid mixtures of ferrite (δ, bcc) and austenite (γ , fcc) stainless steels. These
mixtures were prepared as cylindrical samples with diameter 10 mm, and were quenched into
the two-phase (δ + γ ) region of the phase diagram. The δ-phase is preferentially driven to the
surface due to (a) the atmosphere around the samples and (b) the presence of long-ranged strain
fields. Figure 12 shows the evolution of the unstable mixture. An enriched layer of the ferrite
phase forms at the surface, followed by a depletion layer and then the bulk region, analogous
to figures 4 and 5. The SDSD profiles propagate into the bulk, resulting in a macroscopic
segregated state (see the snapshot at t = 48 h), which is dictated by the composition of the
mixture.

Aichmayer et al also undertook Langevin simulations of the dimensionless SDSD model in
equations (28)–(32) in a cylindrical geometry. In polar coordinates 	r = (r, φ), the appropriate
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t = 60

t = 180

Figure 11. Analogous to figure 10, but for the case of a completely wet surface morphology.

model is

∂

∂ t
ψ(r, φ, t) = −	∇ · 	J = 	∇ ·

{[
−ψ + ψ3 − 1

2
∇2ψ + V (r)

]
+ 	θ
}
. (59)

In this case, the surface potential is V (r) = −V0/(R0 − r)n for R0 − r > 1, and V (r) = −V0

for R0 − r < 1, where R0 is the system radius. As discussed earlier, the exponent n depends
on the nature of the interaction—the value n = 1 is appropriate in the context of long-ranged
strain fields [2]. For completeness, we also present here the appropriate boundary conditions
at r = R0 in polar coordinates:

τ0
∂

∂ t
ψ(R0, φ, t) = h1 + gψ + γ

∂ψ

∂r

∣∣∣∣
r=R0

, (60)

0 =
{
∂

∂r

[
−ψ + ψ3 − 1

2
∇2ψ + V (r)

]
+ θr

}
r=R0

. (61)
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Figure 12. Phase separation in cylindrical samples of steel mixtures of ferrite (δ, bcc) and austenite
(γ , fcc) phases. The δ-phase wets the open surface.

A lower cut-off on r (say, Rm) is necessary to avoid the singularity at r = 0 in the Laplacian,
which is

∇2ψ = ∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂φ2
. (62)

Figure 13 shows evolution pictures obtained from a simulation of equations (59)–(61), and
these are analogous to the experimental snapshots shown in figure 12. (The details of the
simulation can be found in [91].) The initial condition consisted of small fluctuations about
an average value of ψ0 = −0.2. The phase with ψ > 0 wets the surface, so the wetting
component is the minority phase as in section 4.2.2. This is in accordance with the phase
diagram of the experimental system [91].

The evolution in figures 12 and 13 can be quantified by studying the growth dynamics
of the wetting layer. Figure 14 shows the time-dependence of the wetting-layer thickness in
the experiments (denoted as filled circles) and simulations (denoted as a solid curve). The
growth of the ferritic wetting layer exhibits the same features as the numerical result, starting
with rapid initial growth and finally reaching a plateau. There are additional experimental
effects, not accounted for in the simulation, which cause quantitative deviations between the
experimental and numerical results. Nevertheless, the qualitative similarity of the structural
evolution is clear in figure 14. In both cases, the propagating wetting layer finally dominates
over bulk domain growth.
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t = 200 t = 1000

t = 2500 t = 5000

Figure 13. Evolution pictures obtained from a Langevin simulation of equations (59)–(61) [91].
Lattice sites with ψ > 0 are marked in black.

Figure 14. Ratio of the thickness of the wetting layer to the system radius, R1/R0, as a function
of time t (h). The filled circles show experimental values for the steel samples, and the solid curve
was obtained from the simulation depicted in figure 13. The dimensionless simulation time was
multiplied by a diffusion time t0 = 26.4 s to fit the experimental data.

5.2. Phase separation in a thin film

In recent work, Das et al [92] have undertaken Langevin and MD studies of phase separation
of AB mixtures in thin films. Experimental interest in this problem has focused on two cases.
One can consider a physical situation where the walls are symmetric and attract the same
component of the mixture. Alternatively, one can consider the antisymmetric case, where
the walls attract different components. Das et al have studied SDSD in both symmetric and
antisymmetric films.
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Figure 15. Schematic diagram of plug or partially wet (PW) and capsule/tube or completely
wet (CW) states in a symmetric thin film of size L2 × D. The pictures show cross-sections of a
state which is homogeneous in the y-direction. (a) In the PW state, both A and B are in contact
with the surface. The fractions of A and B are φA and φB, respectively. (b) In the CW state, B is
expelled from the surface and forms a capsule of width d and length l.

As stated earlier, the equilibrium state is either CW or PW—depending on the surface
potentials and the confinement geometry [11]. For an arbitrary potential V (z) (arising from
the surfaces), the PW → CW crossover can be estimated as follows. Consider a thin film of
lateral dimension L2 with parallel surfaces at z = 0, D; and a symmetric potential such that

V (z) = V (D − z). (63)

The equilibrium morphology can be either a plug (PW) or capsule/tube (CW), as depicted in
figure 15. The energy associated with the PW configuration is

EPW =
∫

d	r V (z)ψPW(	r) + 2DLσ, (64)

where ψPW(	r) denotes the order parameter field, and we have neglected corrections due to the
contact angle being different from π/2. We make the approximationψPW(	r) � +1 and −1 in
the A-rich and B-rich regions, respectively. Then

ePW = EPW

L2
� (φA − φB)

∫ D

0
dz V (z) +

2D

L
σ, (65)

where φA and φB (=1 − φA) denote the fractions of A-rich and B-rich regions, respectively.
We consider power-law potentials of the form

V (z) = −V0

[
1

(z + 1)n
+

1

(D + 1 − z)n

]
, (66)

where the potential is taken to originate behind the surfaces. Then (for n > 1)

ePW = (φA − φB)
2V0

n − 1
[(D + 1)−n+1 − 1] +

2D

L
σ. (67)

On the other hand, for the CW morphology shown in figure 15, the capsule thickness
d (<D) is an additional parameter. The corresponding energy is obtained as

ECW =
∫

d	r V (z)ψCW(	r) + 2(l + d)Lσ, (68)

where l is the length of the B-capsule. This is determined by the composition constraint as

l = φB L D

d
, (69)
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Figure 16. Phase diagram in the (D, V0/σ)-plane for a binary mixture in a symmetric thin film.
The states are labelled as partially wet (PW) and completely wet (CW), and are shown in figure 15.
The solid curve denotes the PW → CW crossover obtained from equation (72) for a power-law
potential with n = 3. The filled circles denote the PW → CW boundary obtained from Langevin
simulations with a plug initial condition, as described in the text.

and must satisfy l � L. Thus

eCW = ECW

L2
� (L − l)

L

∫ D

0
dz V (z) +

l

L

[∫ D−d
2

0
dz V (z)−

∫ D+d
2

D−d
2

dz V (z) +
∫ D

D+d
2

dz V (z)

]

+
2(l + d)σ

L
. (70)

For the power-law potential in equation (66)

eCW = 2V0

n − 1

{
(D + 1)−n+1 − 1 +

2φB D

d

[(
D − d

2
+ 1

)−n+1

−
(

D + d

2
+ 1

)−n+1
]}

+ 2

(
φB D

d
+

d

L

)
σ. (71)

In the L → ∞ limit, we neglect terms of O(D/L) in equation (67) and O(d/L) in
equation (71). The optimal value of d (denoted as dm) is obtained by minimizing eCW subject
to the constraint φB D � dm < 1. The crossover from the PW → CW morphology occurs
when

ePW = eCW(dm), (72)

where we have neglected fluctuations at low temperatures. The resultant phase diagram for
n = 3 in (D, V0/σ)-space is shown in figure 16. The solid circles in figure 16 denote results
from Langevin simulations on systems of size 5122 × D [92]. These were done by setting up
a plug initial condition, which was allowed to evolve for different values of the surface field.
The circles in figure 16 denote the smallest field value where the plug asymptotically evolves
into a capsule state. We make two observations in connection with this phase diagram.

(1) For D → ∞, the condition in equation (72) reduces to Young’s condition in the bulk for
the case of a power-law potential:

2V0

n − 1
= σ. (73)

For n = 3, the appropriate limiting value is V0/σ = 1, as seen in figure 16.
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Figure 17. Phase separation of a critical mixture in a symmetric thin film of size L2 × D with
L = 512 and D = 5, 10. The evolution snapshots are obtained from an Euler-discretized version
of equation (28) with �x = 1,�t = 0.02. The boundary conditions in equation (31) with τ0 = 0
and equation (32) are implemented at z = 0, D, and periodic boundary conditions are imposed in
the other directions. The potential V (z) is of the form in equation (66) with V0 = 0.1 and n = 3,
and gives a PW morphology for D = 5, 10. The other parameter values are the same as in figure 4.
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Figure 18. Laterally averaged profiles for the evolution depicted in figure 17 at dimensionless
times t = 100, 200, 1000, 10 000.
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(2) The numerical results in figure 16 underestimate the PW → CW crossover at larger values
of D, because the O(D/L) terms become appreciable. Recall that we have neglected these
in the above discussion.

Das et al have obtained a good understanding of the segregation kinetics in both the
diffusive and hydrodynamic cases. Here, we only show representative results from their
studies. Figure 17 shows evolution pictures for diffusive phase separation in a symmetric film.
The parameters are chosen so that the surfaces are PW in equilibrium. The frames on the
LHS and RHS show symmetric films with D = 5 and 10, respectively. Notice that the rapid
kinetics of surface enrichment (see section 6) results in a metastable CW state. This state can
be very long lived, depending on the proximity to the PW–CW line in the phase diagram. The
CW state is finally broken up by fluctuations, and coarsening proceeds by the lateral diffusion
of symmetric plugs. The crossover time to the PW state is earlier for smaller values of D. In
figure 18, we show the corresponding evolution of the laterally averaged profiles.

In figures 19 and 20, we show analogous results for the CW morphology,where segregation
proceeds by the coarsening of capsules. Das et al have obtained detailed results for the
layer-wise correlation functions and length scales which characterize the evolution shown in
figures 17 and 19. They have also obtained results for antisymmetric films, and the case with
hydrodynamics. These results will be presented in a forthcoming publication [92].

6. Kinetics of surface enrichment for stable binary mixtures

6.1. General solution of linear problem

Let us now consider the problem of surface enrichment, which has already been referred
to earlier. This occurs when a stable binary mixture (with T > Tc) is placed in contact
with a surface (at z = 0) which prefers one of the components. For large z, the stable
mixture continues to be homogeneous. However, the surface becomes enriched in the preferred
component, resulting in a time-dependent profile which propagates into the bulk. Jones et al
[57, 58] have studied the kinetics of surface enrichment for polymer mixtures, and found that
the enrichment profiles are characterized by diffusive length-scales. There have also been
numerical studies of this problem with both short-ranged and long-ranged surface fields via
MC [43] and Langevin [93] simulations. Furthermore, Binder and Frisch [48] have studied
this problem for a short-ranged surface potential in the framework of a linear theory. Following
Frisch et al [94, 95], we discuss the solution of the linear problem for a large class of surface
potentials. The regime of validity and the properties of this solution are also discussed.

Recall the nonlinear model in equations (28)–(32). Consider its deterministic version with
T = 0. We will study the evolution of an initial condition consisting of fluctuations about
a uniform background, namely, ψ = ψ0 + ψ ′, as discussed in section 4.1. If we linearize
equation (28) in the fluctuation field ψ ′, we obtain (dropping the primes)

∂

∂ t
ψ(	r , t) = −∇2

[
Cψ +

1

2
∇2ψ − V (z)

]
, z > 0, (74)

where we have introduced the parameter

C = sgn(Tc − T )− 3ψ2
0 . (75)

The linearized boundary conditions are as follows:

τ0
∂

∂ t
ψ( 	ρ, 0, t) = h1 + gψ0 + gψ + γ

∂ψ

∂z

∣∣∣∣
z=0
, (76)

0 = ∂

∂z

[
Cψ +

1

2
∇2ψ − V (z)

] ∣∣∣∣
z=0
. (77)
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Figure 19. Analogous to figure 17, but for the completely wet case with V0 = 0.4 and n = 3.
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Figure 20. Analogous to figure 18, but for the evolution shown in figure 19.

Here, we have explicitly incorporated the possibility that T may be above or below Tc by using
the sign-function, sgn(x) = x/|x |. In our discussion of SDSD, we used the static version
(τ0 = 0) of equation (31). Here, we retain the dynamical version, as we are interested in the
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time-dependent behaviour of the order parameter at the surface. Finally, we focus on potentials
which are flat at the origin, so V ′(0) is subsequently set to zero in equation (77).

For T < Tc, the fluctuations grow in time (when 3ψ2
0 < 1) and the linearized equations

are not valid after the early-time regime. For T > Tc, the fluctuations do not grow and
equations (74)–(77) are valid for all time—provided that the surface field is sufficiently weak
that the value of ψ stays small even near the surface. Thus, our analysis of the linearized
model will be valid at early times for arbitrary temperatures; and at late times when T > Tc

and the surface field is weak. Furthermore, the solution of the linearized model is also valid for
T < Tc and highly off-critical quenches (3ψ2

0 − 1 � 0) provided that there is no nucleation
of droplets. This case was discussed in sections 4.2.2 and 4.2.3.

A Fourier transform of equations (74)–(77) in the direction parallel to the wall yields the
following equations:

∂

∂ t
ψ(	k‖, z, t) =

(
C − 1

2
	k2
‖

)
	k2
‖ψ −

(
C − 	k2

‖
) ∂2ψ

∂z2
− 1

2

∂4ψ

∂z4
+ V ′′(z)δ(	k‖), (78)

τ0
∂

∂ t
ψ(	k‖, 0, t) = (h1 + gψ0)δ(	k‖) + gψ + γ

∂ψ

∂z

∣∣∣∣
z=0

, (79)

0 = ∂

∂z

[(
C − 1

2
	k2
‖

)
ψ +

1

2

∂2ψ

∂z2

]∣∣∣∣
z=0

, (80)

where 	k‖ denotes the wavevector parallel to the surface. If we include a surface diffusion term,
the parameter g in the second term on the RHS of equation (79) is modified [60].

To be specific, we consider critical binary mixtures (namely, ψ0 = 0) and focus on
the case with T > Tc. The solution trivially generalizes to cases with arbitrary ψ0 and
T < Tc. Furthermore, we consider the case where the order-parameter field is homogeneous
parallel to the surface (namely, ψ( 	ρ, z, t) ≡ ψ(z, t)). This is reasonable because the bulk
is homogeneous, and the surface field promotes homogeneity at the surface. In any case,
the method of solution outlined below is also applicable to the laterally inhomogeneous
case, with an appropriate modification of parameters. This is apparent from a comparison
of equations (78)–(80) with the laterally homogeneous version.

Thus, the relevant model is equations (78)–(80) with ψ0 = 0, T > Tc, and 	k‖ = 0:

∂

∂ t
ψ(z, t) = ∂2ψ

∂z2
− 1

2

∂4ψ

∂z4
+ V ′′(z), z > 0, (81)

τ0
∂

∂ t
ψ(0, t) = h1 + gψ + γ

∂ψ

∂z

∣∣∣∣
z=0

, (82)

0 = ∂ψ

∂z

∣∣∣∣
z=0

− 1

2

∂3ψ

∂z3

∣∣∣∣
z=0

. (83)

We Laplace-transform equations (81)–(83) in time to obtain

sψ̃(z, s) = ∂2ψ̃

∂z2
− 1

2

∂4ψ̃

∂z4
+

V ′′(z)
s

, z > 0, (84)

sψ̃(0, s) = h1

s
+ gψ̃ + γ

∂ψ̃

∂z

∣∣∣∣
z=0
, (85)

0 = ∂ψ̃

∂z

∣∣∣∣
z=0

− 1

2

∂3ψ̃

∂z3

∣∣∣∣
z=0

, (86)

where

ψ̃(z, s) =
∫ ∞

0
dt e−stψ(z, t), (87)
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and we have used the homogeneous initial condition ψ(z, t = 0) = 0. The timescale τ0 has
been absorbed into the definition of the parameters h1, g, γ .

Equation (84) is an inhomogeneous fourth-order differential equation with two boundary
conditions. The solution of equations (84)–(86) can be obtained using the solutions of the
homogeneous part of equation (84) [96]. The final result is as follows [94]:

ψ̃(z, s) = h1ξ− + 2s(s − g)(ξ+α − ξ−β)ξ−
D(s)

e−z/ξ+ − ξ+αe−z/ξ+

− h1ξ+ + 2s(s − g)(ξ+α − ξ−β)ξ+

D(s)
e−z/ξ− + ξ−βe−z/ξ−

− ξ+

s�

[
e−z/ξ+

∫ z

0
dz′ ez′/ξ+ V ′′(z ′) + ez/ξ+

∫ ∞

z
dz′e−z′/ξ+ V ′′(z ′)

]

+
ξ−
s�

[
e−z/ξ−

∫ z

0
dz′ ez′/ξ− V ′′(z ′) + ez/ξ−

∫ ∞

z
dz′ e−z′/ξ− V ′′(z ′)

]
, (88)

where

α = 1

s�

∫ ∞

0
dz′ e−z′/ξ+ V ′′(z ′),

β = 1

s�

∫ ∞

0
dz′ e−z′/ξ− V ′′(z ′),

� = ξ−2
+ − ξ−2

− , ξ−2
± = 1 ± √

1 − 2s,

D(s) =
√

s(s − g)√
2

(ξ−1
+ − ξ−1

− ) + γ
√

2s
√

1 − 2s.

(89)

The first four terms on the RHS of equation (88) arise from the homogeneous part of
equation (84), with ξ+ and ξ− being s-dependent length scales. The terms involving integrals
over V ′′(z) in equation (88) arise from the particular solution of equation (84).

The expression in equation (88) is unwieldy and has to be inverse-transformednumerically
to obtain the temporal evolution of enrichment profiles. However, it is relatively straightforward
to obtain the asymptotic time-dependence of important profile characteristics. Recall that we
are primarily interested in potentials which exhibit power-law decays, i.e., V (z) ∼ −z−n .

6.2. Properties of enrichment profiles

An important profile characteristic is the time-dependence of ψ(0, t), the value of the order
parameter at the surface. To obtain this, we set z = 0 in equation (88) and obtain

ψ̃(0, s) = h1(ξ− − ξ+)− 2(ξ+α − ξ−β)γ
√

2s
√

1 − 2s

s(s − g)(ξ− − ξ+) + γ
√

2s
√

1 − 2s
. (90)

The asymptotic (t → ∞) behaviour of ψ(0, t) is determined by the s → 0 behaviour of
ψ̃(0, s). To ascertain this, the leading s-dependence (as s → 0) of various quantities on the
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RHS of equation (90) is computed as follows:

ξ− = 1√
s

[1 + O(s)],

ξ+ = 1√
2

[1 + O(s)],

α = − A

2s
+ O(1), A = −

∫ ∞

0
dz e−z

√
2V ′′(z),

β = h1

2
√

s
− B

2
+ O(

√
s), B = −

∫ ∞

0
dz V (z).

(91)

Replacing these in equation (90), we obtain

ψ̃(0, s) = 1

s

(
h1 + Aγ + h1γ

√
2

γ
√

2 − g

)

− 1√
s

1

(γ
√

2 − g)

[
g(h1 + Aγ + h1γ

√
2)√

2(γ
√

2 − g)
− h1√

2
− Bγ

√
2

]
+ O(1). (92)

The asymptotic time-dependence of ψ(0, t) is obtained by inverse-transforming ψ̃(0, s) as
follows:

ψ(0, t) =
(

h1 + Aγ + h1γ
√

2

γ
√

2 − g

)

− 1√
π(γ

√
2 − g)

[
g(h1 + Aγ + h1γ

√
2)√

2(γ
√

2 − g)
− h1√

2
− Bγ

√
2

]
t−1/2, (93)

where we have retained only the leading correction to the constant value ofψ(0, t) as t → ∞.
Thus, ψ(0, t) saturates diffusively to its equilibrium value.

Next, consider the s-dependence of the profile moments:

〈zm〉 =
∫ ∞

0
dz zmψ̃(z, s). (94)

Replacing the functional form for ψ̃(z, s) from equation (88) in equation (94), some algebra
leads to the following result:

〈zm〉 = �(m + 1)ξm+1
+

[
h1ξ− + 2s(s − g)(ξ+α − ξ−β)ξ−

D(s)
− ξ+α

]

− �(m + 1)ξm+1
−

[
h1ξ+ + 2s(s − g)(ξ+α − ξ−β)ξ+

D(s)
− ξ−β

]

− ξ+

s�

∫ ∞

0
dz V ′′(z)

[∫ ∞

0
dx e−x/ξ+ (z + x)m +

∫ z

0
dx e−x/ξ+ (z − x)m

]

+
ξ−
s�

∫ ∞

0
dz V ′′(z)

[∫ ∞

0
dx e−x/ξ− (z + x)m +

∫ z

0
dx e−x/ξ− (z − x)m

]
. (95)

Clearly, moments are not defined to all orders for power-law potentials. Thus, for a potential
V (z) ∼ −z−n, moments are only defined upto 〈zn〉. The asymptotic behaviour of 〈zm〉 as
t → ∞ is determined by the leading terms in equation (95) as s → 0. The dominant
contributions arise from the second, fifth and sixth terms on the RHS of equation (95), and are
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O[s−(m+3)/2] and O[s−(m+2)/2]. However, there is a cancellation of O[s−(m+3)/2] contributions.
The final result, to leading order, is

〈zm〉 = 1

s
m
2 +1
�(m + 1)

[
h1

√
2 + g(A + h1

√
2)

2(γ
√

2 − g)
+ B

]
. (96)

Finally, the expression in equation (96) is inverse-transformed to obtain the leading asymptotic
time-dependence as

〈zm〉 = −�(m + 1)

�(m
2 + 1)

[
h1

√
2 + g(A + h1

√
2)

2(γ
√

2 − g)
+ B

]
tm/2, (97)

which also corresponds to diffusive behaviour.
The results presented here show a universal time-dependence of ψ(0, t) and 〈zm〉 for a

wide range of potentials. Of course, these results have been obtained in the context of a
linear theory. There is a range of weak surface fields where there is no appreciable difference
between the analytical results obtained from the linear model and numerical results from the
full nonlinear model [94, 95]. In this regime, equation (88) constitutes a complete solution of
the surface enrichment problem. As the field strength is increased, the validity of linear theory
breaks down in the vicinity of the surface. Though this is true for the time-dependent profiles,
Frisch et al [94] demonstrated that the diffusive behaviour of various profile characteristics is
unaffected, even in the strongly nonlinear regime.

7. Summary and discussion

Let us conclude this review with a summary and discussion of the results presented here. We
have focused on the problem of surface-directed spinodal decomposition (SDSD), namely, the
interplay of wetting and phase separation for an unstable binary (AB) mixture in contact with
a surface which has a preferential attraction for one of the components (say, A). The surface
is either partially wetted or completely wetted by the preferred component, depending on the
relative strengths of the A–B, A–surface and B–surface surface tensions. The system evolves
from its unstable homogeneous state to the equilibrium morphology by the formation of SDSD
waves, which propagate from the surface into the bulk. The evolution of these SDSD waves
is driven by phase separation in the bulk. In turn, domain growth adjacent to the surface is
affected by the layered morphology at the surface.

The SDSD problem is of great experimental and technological importance. Therefore,
we started this paper by providing an overview of important experiments in this area. This
overview clarifies the issues which must be addressed by theoretical studies of this problem.
Subsequently, we reviewed the theoretical modelling of SDSD. For diffusive phase separation,
we can study either microscopic models, e.g., the spin-exchange kinetic Ising model in contact
with a surface; or coarse-grained models, e.g., the Cahn–Hilliard–Cook equation supplemented
by boundary conditions which model the presence of a surface. These models can be easily
extended to study SDSD in binary fluids, where the hydrodynamic velocity field determines
the intermediate and asymptotic behaviours of the phase-separating system.

We have used these models to discuss the wetting-layer kinetics, and domain-growth
kinetics adjacent to the wetting layer. We have also presented numerical results for SDSD
in a semi-infinite geometry for a wide range of mixture compositions. The growth law for
the wetting layer exhibits a crossover from potential-dependent growth at early times to a
universal growth regime at late times. The asymptotic growth is fastest for the case where
there is only a small fraction of the wetting component. On the other hand, the wetting-layer
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growth is slowest when the wetting component is the majority component, because droplets
of the minority phase compete with the wetting layer.

Our modelling extends naturally to the problem of phase separation in a confined geometry
(e.g., thin film), where novel physical effects arise due to the interplay of SDSD waves arising
from different boundaries. In this review, we have also presented results for SDSD in a
cylindrical geometry and a thin-film geometry.

Finally, we turned our attention to the problem of surface-enrichment kinetics. This occurs
when a stable binary mixture (with T > Tc) is placed in contact with a surface which prefers
one of the components. As before, the surface is enriched by the preferred component though
the bulk remains homogeneous in this case. The kinetics of surface enrichment is also of
considerable experimental interest. For weak surface fields, a linearization approximation is
valid, and we present the corresponding solution of the enrichment problem for a wide class of
surface potentials. The general solution is characterized by the following features. The surface
value of the enrichment profile saturates diffusively to its asymptotic value. Furthermore, the
profile moments also grow diffusively in time. The substantive features of this solution remain
valid even for strong surface fields, though the linearization approximation is no longer valid
near the surface.

As this review demonstrates, we have now gained a good understanding of the interplay
of wetting and phase separation at surfaces. However, there remain many open questions,
which offer both theoretical and experimental challenges. In particular, we need a better
understanding of phase-separation kinetics in confined systems. Further, the geometries
considered here have been relatively simple, but more complex geometries, e.g., wedges,
patterned surfaces, etc, are often encountered in experimental situations. To date, we only
have a preliminary understanding of segregation dynamics in these complicated geometries.
It is our hope that this review will motivate further interest in this fascinating field of research.
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